14 research outputs found

    Zerovalent Rhodium and Iridium Silatranes Featuring Two-Center, Three-Electron Polar σ Bonds

    Get PDF
    Species with 2‐center, 3‐electron (2c/3e−) σ bonds are of interest owing to their fascinating electronic structures and potential for interesting reactivity patterns. Report here is the synthesis and characterization of a pair of zerovalent (d^9) trigonal pyramidal Rh and Ir complexes that feature 2c/3e− σ bonds to the Si atom of a tripodal tris(phosphine)silatrane ligand. X‐ray diffraction, continuous wave and pulse electron paramagnetic resonance, density‐functional theory calculations, and reactivity studies have been used to characterize these electronically distinctive compounds. The data available highlight a 2c/3e− bonding framework with a σ*‐SOMO of metal 4‐ or 5d_z^2 parentage that is partially stabilized by significant mixing with Si (3p_z) and metal (5‐ or 6p_z) orbitals. Metal‐ligand covalency thus buffers the expected destabilization of transition‐metal (TM)‐silyl σ*‐orbitals by d–p mixing, affording well‐characterized examples of TM–main group, and hence polar, 2c/3e− σ “half‐bonds”

    Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PurÎą is an evolutionarily conserved cellular protein participating in processes of DNA replication, transcription, and RNA transport; all involving binding to nucleic acids and altering conformation and physical positioning. The distinct but related roles of PurÎą suggest a need for expression regulated differently depending on intracellular and external signals.</p> <p>Results</p> <p>Here we report that human <it>PURA </it>(<it>hPURA</it>) transcription is regulated from three distinct and widely-separated transcription start sites (TSS). Each of these TSS is strongly homologous to a similar site in mouse chromosomal DNA. Transcripts from TSS I and II are characterized by the presence of large and overlapping 5'-UTR introns terminated at the same splice receptor site. Transfection of lung carcinoma cells with wild-type or mutated <it>hPURA </it>5' upstream sequences identifies different regulatory elements. TSS III, located within 80 bp of the translational start codon, is upregulated by E2F1, CAAT and NF-Y binding elements. Transcription at TSS II is downregulated through the presence of adjacent consensus binding elements for interferon regulatory factors (IRFs). Chromatin immunoprecipitation reveals that IRF-3 protein binds <it>hPURA </it>promoter sequences at TSS II in vivo. By co-transfecting <it>hPURA </it>reporter plasmids with expression plasmids for IRF proteins we demonstrate that several IRFs, including IRF-3, down-regulate <it>PURA </it>transcription. Infection of NIH 3T3 cells with mouse cytomegalovirus results in a rapid decrease in levels of <it>mPURA </it>mRNA and PurÎą protein. The viral infection alters the degree of splicing of the 5'-UTR introns of TSS II transcripts.</p> <p>Conclusions</p> <p>Results provide evidence for a novel mechanism of transcriptional control by multiple promoters used differently in various tissues and cells. Viral infection alters not only the use of <it>PURA </it>promoters but also the generation of different non-coding RNAs from 5'-UTRs of the resulting transcripts.</p

    Analysis of rare driving events in pediatric acute myeloid leukemia

    Get PDF
    Elucidating genetic aberrations in pediatric acute myeloid leukemia (AML) provides insight in biology and may impact on risk-group stratification and clinical outcome. This study aimed to detect such aberrations in a selected series of samples without known (cyto)genetic aberration using molecular profiling. A cohort of 161 patients was selected from various study groups: DCOG, BFM, SJCRH, NOPHO and AEIOP. Samples were analyzed using RNA sequencing (n=152), whole exome (n=135) and/or whole genome sequencing (n=100). In 70 of 156 patients (45%), of whom RNA sequencing or whole genome sequencing was available, rearrangements were detected, 22 of which were novel; five involving ERG rearrangements and four NPM1 rearrangements. ERG rearrangements showed self-renewal capacity in vitro, and a distinct gene expression pattern. Gene set enrichment analysis of this cluster showed upregulation of gene sets derived from Ewing sarcoma, which was confirmed comparing gene expression profiles of AML and Ewing sarcoma. Furthermore, NPM1-rearranged cases showed cytoplasmic NPM1 localization and revealed HOXA/B gene overexpression, as described for NPM1 mutated cases. Single-gene mutations as identified in adult AML were rare. Patients had a median of 24 coding mutations (range, 7-159). Novel recurrent mutations were detected in UBTF (n=10), a regulator of RNA transcription. In 75% of patients an aberration with a prognostic impact could be detected. Therefore, we suggest these techniques need to become standard of care in diagnostics

    Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression

    No full text
    Caenorhabditis elegans is one of the most prominent model systems for embryogenesis, but collecting many precisely staged embryos has been impractical. Thus, early C. elegans embryogenesis has not been amenable to most high-throughput genomics or biochemistry assays. To overcome this problem, we devised a method to collect staged C. elegans embryos by fluorescence-activated cell sorting (eFACS). In a proof-of-principle experiment, we found that a single eFACS run routinely yielded tens of thousands of almost perfectly staged 1-cell stage embryos. As the earliest embryonic events are driven by posttranscriptional regulation, we combined eFACS with second-generation sequencing to profile the embryonic expression of small, noncoding RNAs. We discovered complex and orchestrated changes in the expression between and within almost all classes of small RNAs, including microRNAs and 26G-RNAs, during embryogenesis

    SMAD proteins of oligodendroglial cells regulate transcription of JC virus early and late genes coordinately with the Tat protein of human immunodeficiency virus type 1

    No full text
    JC virus (JCV) is the aetiological agent of progressive multifocal leukoencephalopathy (PML), a fatal, demyelinating disease of the brain affecting people with AIDS. Although immunosuppression is involved in infection of the brain by JCV, a direct influence of human immunodeficiency virus type 1 (HIV-1) has also been established. The Tat protein of HIV-1 has been implicated in activation of the cytokine transforming growth factor (TGF)-β in HIV-1-infected cells and in stimulating JCV gene transcription and DNA replication in oligodendroglia, the primary central nervous system cell type infected by JCV in PML. This study demonstrated that Tat can cooperate with SMAD proteins, the intracellular effectors of TGF-β, at the JCV DNA control region (CR) to stimulate JCV gene transcription. Tat stimulated JCV early gene transcription in KG-1 oligodendroglial cells when expressed via transfection or added exogenously. Using chromatin immunoprecipitation, it was shown that exogenous Tat enhanced binding of SMAD2, -3 and -4 and their binding partner Fast1 to the JCV CR in living cells. When SMAD2, -3 and -4 were expressed together, Tat, expressed from plasmid pTat, stimulated transcription from both early and late gene promoters, with the early promoter exhibiting stimulation of >100-fold. Tat, SMAD4 and JCV large T-antigen were all visualized in oligodendroglial cells at the border of an active PML lesion in the cerebral frontal lobe. These results revealed a positive reinforcement system in which the SMAD mediators of the TGF-β system act cooperatively with Tat to stimulate JCV gene transcription
    corecore